

Roland Kruse, Tiedo Meyer:

Vibration platform for the calibration of optical sensors

Overview

The project KOLOS Vibration sensor Measurement principle Vibration platform I Concept Characteristics / Performance Vibration platform II Characteristics / Performance Summary

The project KOLOS

(Cost-Effective Laser Sensor for Optical Vibration Measurements)

- Low cost, contactless sensor for measuring the amplitude of in-plane vibrations
- Based on the evaluation of the speckle pattern of the surface
- Alternative to laser vibrometers (large, expensive but contactless) and accelerometers (low cost, triaxial measurement, high precision but has to be bond to surface)

Device required for

- Calibration of the new sensor
- Check it's performance (amplitude and frequency range)
- Check the effect of surface normal vibrations
 (Can the sensor surely distinguish vibrations in different directions ?)

Needed: Device for reproduction of vibrations in 3D

The vibration sensor I

The vibration sensor II

The vibration sensor III

No motion

With linear motion

The vibration sensor IV

The vibration sensor V

Roland Kruse, Tiedo Meyer (Oldenburg University): Vibration platform for the calibration of optical sensors

Vibration platform: Concept

- Aluminium plate (≥ 5 * 5 cm²) driven by electro-dynamical shakers
- Elastic suspension
- 3D accelerometer for vibration monitoring
- PC (Matlab) providing GUI and vibration control, including crosstalk compensation
- Amplitude limited by nominal shaker force, frequency by first eigenmode of plate
- Requirement: 10 μm amplitude up to 500 Hz (~ 10 g)

Vibration platform I: Model

Vibration platform I: Photo

Vibration Platform I: Characteristics

Frequency response

Amplitude range

Crosstalk

Motion pattern

Vibration platform I: Frequency response

Non - linearity: Dependence of frequency response on driving voltage

Vibration platform I: Amplitude range

X - direction: Amplitude range for THD+N < 1%

Vibration platform I: Crosstalk compensation

Before compensation

After compensation, inversely phased signal output

Vibration platform I: Crosstalk compensation

Crosstalk for 10 µm vibration in X - direction

Vibration platform I: Motion pattern

Vibration platform I: Motion pattern (Z)

Vibration platform I: Summary

- Design generally adequate
- Crosstalk cancellation working
- Non linear behavior means control system required (Proportional controller)
- Vibration amplitude above 300 Hz too low
- Z vibration not uniform on the surface
- Reduce mass of vibrating parts
- Make design more symmetric

Vibration platform II: Photo

Vibration Platform II: Characteristics

Amplitude range

Crosstalk

Uniformity of vibration

Vibration platform II: Amplitude range X

X - direction: Amplitude range for THD+N < 1%

Vibration platform: Model

Vibration platform II: Amplitude range Z

Z - direction: Amplitude range for THD+N < 1%

Vibration platform II: Crosstalk

Crosstalk for 10 µm vibration in X - direction

Vibration platform II: Z - vibration

Difference in vibration amplitude between two positions (edges) on the surface

Summary

- Platform for reproduction of 3D vibrations has been constructed
- Useful for testing and calibration of (optical) vibration sensors if 1D calibration is not sufficient
- Frequency range of 20 500 Hz with an amplitude
 ≥ 10 μm (maximum 200 μm)
- Simple and effective crosstalk compensation
- Reasonable uniform vibration amplitude on the surface

Thank you for your attention!